LSI Cubed promotes cross-lab interaction and collaboration by funding “cubes” of two to three graduate students and/or postdoctoral fellows from at least two LSI labs. This donor-funded initiative engages students and postdocs in multidisciplinary research early in their scientific careers, while providing important career-building skills such as writing proposals and designing, executing and running the budget for an independent research project. 

Each year, the LSI  funds several projects at up to $10,000 each, covering the costs of supplies and equipment. A letter of support from a faculty mentor is required for each proposal.

LSI Cubed Projects


  • Characterization of the role of opioids in the central cough circuit using novel genetic sensors and actuators (Noam Gannot, Lequn Geng and Kayla Kroning; Li & Wang labs)
  • Characterization of dynamic PKS module architecture (Tyler McCullough and Joshua Salem; Smith & Håkansson labs)


  • Novel cholinergic circuitry in liver function and disease (Henry Kuang, Linkang Zhou, Alexander Knights and Shanshan Liu; Lin & Wu labs)
  • Understanding the mechanism of autophagy modulation by the N terminus of Atg12 (Wayne Hawkins, Vikramjit Lahiri and Matthew Henley; Klionsky & Mapp labs)


  • Structural studies of autophagosome formation in yeast that will shed light on proteins integral to the core autophagy machinery (Aileen Ariosa, Elizabeth Delorme-Axford and Melody Sanders; Klionsky & Ohi labs)
  • Functional imaging of the activity pattern of orexin neurons related to breathing, and examination of how it is affected by obesity (Patrick Sweeney and Xuenan Wang; Cone and Li labs)
  • Investigation of the role of the FLAP–5-LO protein complex in forming a leukotriene that is essential for recruiting neutrophils to tissue damage (Clarissa Durie and Song Chen; Ohi & Parent labs)
  • Protein engineering for the biocatalytic synthesis of novel natural product derivatives to target a protein-protein interaction that facilitates rapid proliferation of cells in fast-growing tumors (Julie Garlick, Clint Regan and Vikram Shende; Mapp & Sherman labs)


  • Structural biology studies of the polyketide synthases that make juvenimicins, an important class of antibiotics (Andrew Lowell, Kinshuk Srivastava and Meredith Skiba; Sherman & Smith labs)
  • Identifying mutants that can activate the Vps34 protein in yeast, and testing the effect of these mutations on their ability to clean up the cell through autophagy (Vikramjit Lahiri, Sai Srinivas Panapakkam Giridharan and Noah Steinfeld; Klionsky & Weisman labs)
  • A machine-learning approach to engineering proteins for the biocatalytic synthesis of novel epipolythiodiketopiperazine derivatives as potential anti-cancer agents (Julie Garlick, Clint Regan and Vikram Shende; Mapp & Sherman labs)
  • Characterization of natural products with potential to inhibit the calmodulin-GPCR kinase 5 interaction implicated in cardiac hypertrophy (Amy Fraley and Tyler Beyett; Sherman & Smith labs)
  • Identifying novel TRPA1 independent pathways to regulate thermogenesis (Dongil Kim, Jianke Gong and Elizabeth Ronan; Wu & S. Xu labs)